Let's start with an example. Suppose we want to solve the system of linear equations
$$ 2x+y+3z=1\\ x-y=1\\ 2x+z = 1 $$
The first step is to write this in the form of a matrix.
$$ \begin{bmatrix}2&1&3\\1&-1&0\\2&0&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}1\\1\\1\end{bmatrix} $$
Let us write this as a single matrix:
$$ \begin{bmatrix}2&1&3&1\\1&-1&0&1\\2&0&1&1\end{bmatrix} $$
We solve this using row operations.
$$ \begin{bmatrix}2&1&3&1\\1&-1&0&1\\2&0&1&1\end{bmatrix} =\begin{bmatrix}1&0&0&1/3\\0&1&0&-2/3\\0&0&1&1/3\end{bmatrix}. $$
Definition 2.1.1 (Row operations). A row operation on a matrix is one of three operations:
Theorem 2.1.1. If the matrix $[A|\vec b]$ representing a system of linear equations $A\vec x = \vec b$ can be turned into $[A'|\vec b']$ by a sequence of row operations, then the set of solutions $A\vec x = \vec b$ and the set of solutions $A' \vec x = \vec b'$ coincide.
A matrix is in echelon form if